Q	Question		er	Marks	Guidance
1	(a)		 Definition The e.m.f. (of a half-cell) compared with a (standard) hydrogen half-cell/(standard) hydrogen electrode ✓ Standard conditions Temperature of 298 K / 25°C AND (solution) concentrations of 1 mol dm⁻³ / 1M AND pressure of 101 kPa OR 100 kPa ✓ 	2	 ALLOW voltage OR potential difference OR p.d. OR electrode potential OR reduction potential OR redox potential as alternative for e.m.f. IGNORE S.H.E. (as abbreviation for standard hydrogen electrode) ALLOW 1 atmosphere/1 atm OR 10⁵ Pa OR 1 bar
	(b)		2.71 V ✓	1	IGNORE any sign
	(c)	(i)	$\begin{array}{l} Al + 3Fe^{3+} \longrightarrow Al^{3+} + 3Fe^{2+} \checkmark \\ 2Al + 3I_2 \longrightarrow 2Al^{3+} + 6I^- \checkmark \\ 2I^- + 2Fe^{3+} \longrightarrow I_2 + 2Fe^{2+} \checkmark \end{array}$	3	Correct species AND balancing needed for each mark IGNORE state symbols ALLOW equilibrium sign (i.e. assume reaction is to right) ALLOW correct multiples IF there are more than three equations • mark a maximum of three equations • mark incorrect equations first
		(ii)	High activation energy OR slow rate \checkmark Conditions not standard OR concentrations not 1 mol dm ⁻³ \checkmark	2	DO NOT ALLOW 'standard conditions' are different

Question	er	Marks	Guidance
(d)	ANNOTATE WITH TICKS, CROSSES, etc General (2 marks – assumed to be acid) • (<i>E</i> of) 7 (C <i>l</i> O ⁻ /C <i>l</i> ₂) is more positive/less negative (than 6) OR <i>E</i> _{cell} is (+)0.27 (V) OR <i>E</i> _{cell} is positive ✓ • 6 (C <i>l</i> ₂ /C <i>l</i> ⁻) moves to left AND 7 (C <i>l</i> O ⁻ /C <i>l</i> ₂) to right ✓	4 max	Order the collection of the collectio
	 In alkali (3 marking points), H⁺ in 7 (ClO⁻/Cl₂) is removed by/reacts with OH⁻/alkali ✓ (<i>E</i> of) 7 (ClO⁻/Cl₂) less positive/more negative (than 6) ✓ 6 (Cl₂/Cl⁻) moves to right AND 7 (ClO⁻/Cl₂) to left ✓ 		ALLOW correct eqn: $Cl_2 + H_2O \rightarrow C\Gamma + ClO^- + 2H^+$ IGNORE uncancelled electrons ALLOW multiples, e.g. $2Cl_2 + 2H_2O \rightarrow 2C\Gamma + 2ClO^- + 4H^+$ Note: IF equilibrium shifts are correct, IGNORE incorrectly balanced equation but CON an equation in wrong direction

Question		ion	er	Marks	Guidance
	(e)	(i)	IO ₃ ⁻ has removed/gained electrons from Sn ²⁺	1	ALLOW IO_3^- is the oxidising agent as I has been reduced
			OR IO_3^- has been reduced to I_2 / reduced to 0		DO NOT ALLOW just IO_3^- has been reduced
			OR IO_3^- has oxidised Sn ²⁺ \checkmark		DO NOT ALLOW I is the oxidising agent
		(ii)	$5\mathrm{Sn}^{2+}$ + $2\mathrm{IO}_3^-$ + $12\mathrm{H}^+ \longrightarrow \mathrm{I}_2$ + $5\mathrm{Sn}^{4+}$ + $6\mathrm{H}_2\mathrm{O}$	2	ALLOW correct multiples
					eg $2\frac{1}{2}$ Sn ²⁺ + IO ₃ ⁻ + 6H ⁺ $\rightarrow \frac{1}{2}$ I ₂ + $2\frac{1}{2}$ Sn ⁴⁺ + 3H ₂ O
			All chemical species correct with no extra chemical species ✓		
			Correct balancing with no electrons shown \checkmark		IGNORE e ⁻ for 1st marking point
			Total	15	

C	Question		Answer	Marks	Guidance
2	(a)	(i)	complete circuit with voltmeter and salt bridge linking two half-cells \checkmark Pt electrode in Fe ³⁺ /Fe ²⁺ half-cell with same concentrations \checkmark		Salt bridge MUST be labelled ALLOW Fe ²⁺ and Fe ³⁺ with concentrations of 1 mol dm ⁻³ ALLOW 1 M but DO NOT ALLOW 1 mol
				3	
		(ii)	$Cr + 3Fe^{3+} \longrightarrow Cr^{3+} + 3Fe^{2+} \checkmark$	1	ALLOW \rightleftharpoons sign DO NOT ALLOW if e ⁻ shown uncancelled on both sides, e.g. Cr + 3Fe ³⁺ + 3e ⁻ \longrightarrow Cr ³⁺ + 3Fe ²⁺ + 3e ⁻
		(iii)	1.51 V ✓	1	IGNORE sign
	(1-)		2^{-} and 1^{+} (4	ALLOW a sidifical disbuscesses
	(d)				
	(c)		$\begin{array}{rcl} Cr_2O_7^{2-}(aq) &+ &8H^+(aq) &+ &3HCOOH(aq) &\longrightarrow \\ & & & 2Cr^{3+}(aq) &+ &7H_2O(I) &+ &3CO_2(I) \\ \checkmark\checkmark\\ State symbols not required \end{array}$	2	 1st mark for ALL species correct and no extras: Cr₂O₇²⁻, H⁺, HCOOH, Cr³⁺, H₂O AND CO₂ NOTE: H⁺ may be shown on both sides ALLOW sign 2nd mark for correct balancing with H⁺ cancelled down
	(d)	(i)	E^{\bullet} for chromium (redox system) is more negative/lower/less (than copper redox system) ORA \checkmark chromium system shifts to the left / $Cr(s) \longrightarrow Cr^{3+}(aq) + 3e^{-}$ AND copper system shifts to the right /		ALLOW <i>E</i> _{cell} is +1.08 V (sign required) ALLOW Cr loses electrons more readily/more easily oxidised OR Cr is a stronger reducing agent OR Cu loses electrons less readily OR Cu is a weaker reducing agent
			$\tilde{Cu}^{2+}(aq) + 2e^{-} \longrightarrow Cu(s) \checkmark$	2	

C	Questio	on	Answer	Marks	Guidance
	(d)	(ii)	Cr reacts with H ⁺ ions/acid to form H ₂ gas \checkmark	1	ALLOW equation: $2Cr + 6H^+ \longrightarrow 2Cr^{3+} + 3H_2$ (ALLOW multiples) DO NOT ALLOW just 'hydrogen forms', i.e. Cr, H ⁺ /acid AND H ₂ must all be included for the mark
	(e)	(i)	1.45 V ✓	1	IGNORE sign
		(ii)	 2 marks, ✓ ✓, for two points from the following list: 1. Methanoic acid is a liquid AND easier to store/transport OR hydrogen is a gas AND harder to store/transport OR hydrogen as a liquid is stored under pressure 2. Hydrogen is explosive/more flammable 3. HCOOH gives a greater cell potential/voltage 4. HCOOH has more public/political acceptance than hydrogen as a fuel 	2	ASSUME 'it' refers to HCOOH DO NOT ALLOW 'produces no CO_2 ' IGNORE comments about biomass and renewable $HCOOH$ and H_2 are both manufactured from natural gas
			Total	14	

G	Question		er	Mark	Guidance
3	(a)		 Definition The e.m.f. (of a half-cell) compared with a standard hydrogen half-cell/standard hydrogen electrode ✓ Standard conditions Temperature of 298 K / 25°C AND (solution) concentrations of 1 mol dm⁻³ AND pressure of 101 kPa OR 100 kPa ✓ 	2	 ALLOW voltage OR potential difference OR p.d. OR electrode potential OR reduction potential OR redox potential as alternative for e.m.f. IGNORE S.H.E. (as abbreviation for standard hydrogen electrode) ALLOW 1 atmosphere/1 atm OR 10⁵ Pa OR 1 bar
	(b)		1.25 (V) ✓	1	IGNORE any sign
	(c)	(i)	Cd + 2NiO(OH) + 2H ₂ O \longrightarrow Cd(OH) ₂ + 2Ni(OH) ₂ LHS: correct species and correctly balanced \checkmark RHS: correct species and correctly balanced \checkmark	2	2 marks for correct equation ALLOW NiOOH OR NiO ₂ H ALLOW \Rightarrow sign for equation (<i>ie</i> assume reaction goes from left to right) ALLOW 1 mark for correctly balanced equation with e ⁻ and/or OH ⁻ shown e.g.: Cd + 2NiO(OH) + 2H ₂ O + 2OH ⁻ + 2e ⁻ \longrightarrow Cd(OH) ₂ + 2Ni(OH) ₂ + 2OH ⁻ + 2e ⁻ ALLOW 1 mark for balanced correct reverse equation with OH ⁻ AND e ⁻ cancelled: Cd(OH) ₂ + 2Ni(OH) ₂ \longrightarrow Cd + 2NiO(OH) + 2H ₂ O
		(ii)	oxidation: Cd from 0 to $+2 \checkmark$ '+' sign not required		ALLOW $Cd^0 \rightarrow Cd^{2+}$ (shows 0 and 2+)
			reduction: Ni from +3 to +2 \checkmark '+' sign not required	2	ALLOW $Ni^{3+} \rightarrow Ni^{2+}$ (shows 3+ and 2+) ALLOW ECF from (c)(i) equation written 'wrong way around'.
	(d)	(i)	reverse reactions to charging OR $Cd(OH)_2 + 2e^- \longrightarrow Cd + 2OH^-$ $Ni(OH)_2 + OH^- \longrightarrow NiO(OH) + H_2O + e^-$ OR reaction that is reverse to reaction given in c(i) : $Cd(OH)_2 + 2Ni(OH)_2 \longrightarrow Cd + 2NiO(OH) + 2H_2O \checkmark$	1	If half-equations are given, then BOTH equations required ALLOW \Rightarrow sign for equation (<i>ie</i> assume reaction goes from left to right)

Question		ion	er	Mark	Guidance
	(d)	(ii)	$\begin{array}{rcl} 4OH^{-} & \longrightarrow & O_{2} + 2H_{2}O + 4e^{-}\checkmark \\ 2H_{2}O & + & 2e^{-} & \longrightarrow & H_{2} + 2OH^{-}\checkmark \end{array}$	2	ALLOW multiples; ALLOW ⇒ sign for each equation Note: These are the only correct responses
			Total	10	

Qu	esti	ion	Expected Answers	Marks	Additional Guidance
4	a		Complete circuit (with voltmeter) and salt bridge linking two half-cells ✓ Pt electrode in solution of Fe ²⁺ /Fe ³⁺ ✓ Ag in solution of Ag ⁺ ✓	3	 DO NOT ALLOW 'solution of a silver halide', e.g. AgCl (as these are insoluble) but DO ALLOW any solution of any other silver salt (whether insoluble or not) IF candidate has used incorrect redox systems, then mark ECF as follows: (i) each incorrect system will cost the candidate one mark (ii) if species have been quoted (see Additional Guidance below) (iii) for equation (iv) for cell potential YOU MAY NEED TO WORK OUT THESE ECF RESPONSES YOURSELF DEPENDING ON THE INCORRECT REDOX SYSTEMS CHOSEN
		ii	electrons AND ions ✓	1	For electrons, ALLOW e [−] For 'ions', ALLOW formula of an ion in one of the half-cells or salt bridge, e.g. Ag ⁺ , Fe ²⁺ , Fe ³⁺ ALLOW ECF as in (i)
		iii	$Ag + Fe^{3+} \longrightarrow Ag^{+} + Fe^{2+} \checkmark$	1	ALLOW ECF as in (i) ALLOW equilibrium sign
		iv	0.43 V ✓	1	ALLOW ECF as in (i)
	b	i	Cl ₂ OR O ₂ AND H ⁺ ✓	1	ALLOW chlorineALLOW O_2 AND $4H^+$ ALLOW O_2 AND acidDO NOT ALLOW O_2 aloneDO NOT ALLOW equation or equilibrium
		ii		1	ALLOW 2I ⁻ OR iodide DO NOT ALLOW equation or equilibrium

Question	Expected Answers	Marks	Additional Guidance
C	 A fuel cell converts energy from reaction of a fuel with oxygen into a voltage/electrical energy ✓ 2H₂ + O₂ → 2H₂O ✓ Two from: under pressure OR at low temperature OR as a 	5	ANNOTATIONS MUST BE USED ALLOW combustion for reaction of fuel with oxygen/reactants ALLOW a fuel cell requires constant supply of fuel OR operates continuously as long as a fuel (and oxygen) are added ALLOW multiples, e.g. $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$ IGNORE state symbols
	 adsorbed on solid absorbed within solid ✓✓ Energy is needed to make the hydrogen OR energy is needed to make fuel cell ✓ 		ALLOW 'material' OR metal for solid ALLOW as a metal hydride
	Total	13	

Qu	esti	ion Expected Answers	Marks	Additional Guidance
5	а	$H_2O_2 \longrightarrow O_2 + 2H^+ + 2e^- \checkmark \checkmark$	2	All other multiples score 1 mark
				e.g. $\frac{1}{2}$ H ₂ O ₂ \longrightarrow $\frac{1}{2}$ O ₂ + H ⁺ + e ⁻
				$5H_2O_2 \longrightarrow 5O_2 + 10H^+ + 10e^-$
	b	Marks are for correctly calculated values.		ANNOTATIONS MUST BE USED
		Working shows how values have been derived.		
		$n(KMnO_4) = \frac{0.0200 \times 23.45}{0.0200 \times 23.45} = 4.69 \times 10^{-4} \text{ (mol) } \checkmark$		DO NOT ALLOW 4.7. 10^{-4}
		1000		
				ALLOW 1 173 x 10^{-3} OR 1 17 x 10^{-3} (i.e. 3 significant figures upwards)
		$n(H_2O_2) = 5/2 \times 4.69 \times 10^{-4} = 1.1725 \times 10^{-6} \text{ (mol)} \checkmark$		ALLOW by ECF : $5/2 \times \text{ans above}$
		$n(H_2\Omega_2)$ in 250 cm ³ solution		
		$= 10 \times 11725 \times 10^{-3} = 11725 \times 10^{-2} \text{ (mol)} \checkmark$		ALLOW by ECF 10 × ans above
				ALLOW concentration $H_2O_2 = 0.0469 \text{ mol } dm^{-3}$
		concentration in g dm ^{-3} of original H ₂ O ₂		ALLOW by ECF 40 × $n(H_2O_2)$ × 34 ALLOW 0.0460 × 10 × 24 = 15.0 a dm ⁻³ ·/
		$= 40 \times 1.1725 \times 10^{-2} \times 34 = 15.9 \text{ (g dm}^{-3}) \checkmark$	4	ALLOW 0.0469 x 10 x 34 = 15.9 g dill \checkmark
				ALLOW two significant figures. 16 (g dm ^{-3}) up to calculator value of
				15.946 g dm^{-3}
		$n(O_2) = 5/2 \times 4.69 \times 10^{-4} = 1.1725 \times 10^{-3} \text{ (mol)} \checkmark$		ALLOW 0.028 dm ³ OR 0.02814 dm ³
				ALLOW 28 cm ³ OR 28.14 cm ³
		volume $O_2 = 24.0 \times 1.1725 \times 10^{-3} = 0.0281 \text{ dm}^3 \checkmark$	2	Value AND units required
			_	
				ALLOW by ECE : 24.0 \times calculated moles of Ω_{0} (2 significant figures up
				to calculator value)
		Total	8	